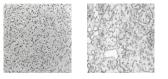
Data Sheet LC 200 N Tooling Alloys

Zapp is certified to ISO 9001

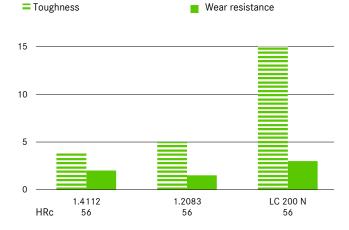
CHEMICAL COMPOSITION

Carbon	0.3 %
Chromium	15.0 %
Molybdenum	1.0 %
Manganese	max. 1.0 %
Nickel	max. 0.5 %
Nitrogen	max. 0.5 %


LC 200 N

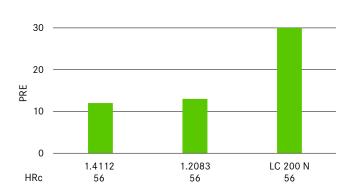
LC 200 N is a high nitrogen alloyed tool steel which exhibits superior corrosion resistance combined with high toughness even at a hardness up to 60 HRc. LC 200 N combines the PESR- (Pressurized Electric Slag Remelting) Process with a smart forging technology. This process route offers an amazing increase in cleanliness and fine structure. By this, a very fine and homogeneous microstructure can be achieved. Main advantages of this steel is its excellent machinability and excellent polishability as well as a high dimensional stability after heat treatment. For this reason, LC 200 N is a solution for tools facing high static and dynamical load under a high corrosive environment at higher temperatures. Compared to standard tool steels like 1.2316, 1.4112 and 1.4125, LC 200 N exhibits higher corrosion resistance and toughness as well as a higher tempering resistance up to 500 °C at an operating hardness of 58-60 HRc.

TYPICAL APPLICATIONS


- _Food industry, blades, portioning and filling units _Pump components, spindles, extrusion- and proportioning units for chemical and pharmaceutical industry
- _Tablet tooling
- _Mirror-polished dies for plastics industry
- _Shredder knives, granulations and pelletizers for recycling industry

STRUCTURE OF LC 200 N COMPARED TO 1.4112

(magnification 1000 x etched)


WEAR RESISTANCE / TOUGHNESS

qualitative comparison

CORROSION RESISTANCE

Corrosion resistance

zapp

PHYSICAL PROPERTIES	
Modulus of Elasticity E [GPa]	214
Density [kg/dm ³] soft annealed hardened	7.72 7,67
Specific heat capacity [kJ/(kg*K)] -196 °C 10 °C 120 °C	17,17 x 10 ⁻² 48,59 x 10 ⁻² 54,03 x 10 ⁻²
Linear expansion coefficient [mm/mm/K] over a temperature range of 20 - 120 °C	10,8 × 10 ⁻⁶
Thermal conductivity [W/m*K] at 10 °C 120 °C	13,8 (58HRc) 20,8 (32 HRc) 15,0 (58HRc) 21,8 (32 HRc)

THERMAL TREATMENTS

SOFT-ANNEALING

Heat LC 200 N uniformly to 780-820 °C in controlled atmosphere furnaces or with suitable protective media. Hold at temperature for approximately two to four hours and cool slowly in the furnace. The annealed hardness is lower than 300 HB.

STRESS RELIEVING

Rough machined material is stress relieved by heating to 600-650 °C. Once complete heat penetration has been reached (minimum 2 hours), the material is allowed to cool in the furnace to approximately 350 °C followed by cooling in air.

Hardened material is stress relieved at 15-30°C for 2 hours below last tempering temperature followed by cooling in air.

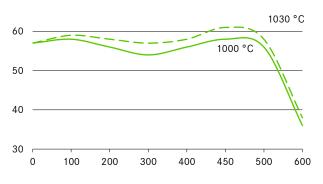
HARDENING

Professional heating to austenitizing temperature with common holding steps is recommended. Holding time varies from 20 to 40 minutes after complete homogenization.

Generally, an all-around grinding tolerance of approximately 0.2 mm needs to be considered in order to take care of any possibility of decarburization,

denitrization or oxidation. Additionally, it is desirable to use a controlled atmosphere furnace or vacuum furnace with controlled chamber pressure typically used for high chromium alloyed materials.

QUENCHING


Quenching can be done with aircool bath or interrupted oil quench. When air is used, minimum overpressure of 5 bar is necessary.

TEMPERING

Subzero treatment with minimum -80°C and a holding time of minimum 60 minutes is recommended as soon as the tools can be held comfortably in bare hands. For Austenizing temperatures of higher than1000°C, subzero treatment is mandatory. Alternatively, subzero treatment at -196 °C (liquid nitrogen) for 30 minimum can be performed. Subsequently material needs to be tempered for 2 times for 2 hours at suited temperature to achieve target properties.

TEMPERING DIAGRAM

Hardness, HRc

Tempering Temperature, °C after subzero quenching

INSTRUCTIONS FOR HEAT TREATMENT

Preheating	750-780 °C
Austenizing	See chart below
Cooling	Quenching in oil, salt bath or air (min. 5 bar overpressure) to 550°C.
Tempering	2 x 2 hours (see chart below)

Hardness HRc ± 1	Austeniz- ing Temp. °C	Tempering °C	Corrosion resistance	Toughness
>58	1030*	160-180	++	0
55 - 58	1030*	220-300	++	++
>58	1030*	460-475	+	+
30 - 40	1000	550-620	+	+++
-				

*Subzero quenching, -80 °C, 60 min, air

Heat treatment parameters need to be selected on basis of the aimed target combination of hardness, toughness and corrosion resistance.

MACHINING DATA

TURNING

With carbide metal			
Cutting depth [mm]	0.5 - 1.0	1.0 - 4.0	4.0 - 8.0
Feed [mm/U]	0.1 - 0.2	0.2 - 0.4	0.6 - 0.6
Tools according ISO	P10, P20, M10	P20, M10, M20	P30, M20, K10
Cutting speed			
Cutting inserts	260 - 200	200 - 150	150 - 110
Soldered carbide metal	210 - 170	170 - 130	140 - 90
Coated cutting inserts			
ISO P25	Up to 240	Up to 210	Up to 160
ISO P35	Up to 210	Up to 160	Up to 140
Edge angle for soldered carbide metals			
Relief angle	6° - 8°	6° - 8°	6° - 8°
Chip angle	12° - 15°	12° - 15°	12° - 15°
Inclination angle	0°	0°	- 4°

HARDTURNING

Cutting material	cBN 3
Cutting plate geometry	SNGN 090308 T 02020
Cutting speed Vc[m/min]	125
Feed [mm/U]	0.1
Cutting depth [mm]	0.2
Setting angle	75°
Chip angle	- 6°
Relief angle	6°
Inclination angle	- 4°

TURNING

With high speed steel			
Cutting depth [mm]	0.5	3	6
Feed [mm/U]	0.1	0.5	1.0
Din-grade	DIN S 10-4-3-1	0	
Cutting speed [m/min.]	55 - 45	45 - 35	35 - 25
Relief angle	8°- 10°	8°- 10°	8°- 10°
Chip angle	14° - 18°	14° - 18°	14° - 18°
Inclination angle	0°	0°	- 4°

MILLING

With milling heads		
Feed [mm/tooth]	Up to 0.2	0.2 - 0.3
ISO P25	160 - 100	110 - 60
ISO P40	100 - 60	70 - 40
ISO P35	140 - 110	

DRILLING

With carbide metal			
Drilling diameter [mm]	3 - 8	8 - 20	20 - 40
Feed [mm/U]	0.02 - 0.05	0.05 - 0.12	0.12 - 0.18
Carbide metal	K10	K10	K10
Point angle	115° - 120°	115° - 120°	115° - 120°
Relief angle	5°	5°	5°

Zapp Materials Engineering GmbH

TOOLING ALLOYS Zapp-Platz 1 40880 Ratingen P.O. Box 10 18 62 40838 Ratingen Germany Phone +49 2102 710-548 Fax +49 2102 710-596

toolalloys@zapp.com

SERVICE CENTER Hochstraße 32 59425 Unna Germany Phone +49 2304 79-511 Fax +49 2304 79-7652 www.zapp.com Further information regarding our products and locations are available in our image brochure and under www.zapp.com

The illustrations, drawings, dimensional and weight data and other information included in these data sheets are intended only for the purposes of describing our products and represent non-binding average values. They do not constitute quality data, nor can they be used as the basis for any guarantee of quality or durability. The applications presented serve only as illustrations and can be construed neither as quality data nor as a guarantee in relation to the suitability of the material. This cannot substitute for comprehensive consultation on the selection of our products and on their use in a specific application. The brochure is not subject to change control. Last revision: July 2020