
Ergste® 1.4542GE/GG Datasheet Medical Alloys

Zapp is Certified According to ISO 9001

Grade Ergste® 1.4542GE/GG

Ergste® 1.4542GE/GG is a martensitic precipitation hardenable 17% chromium-nickel-steel. It combines high strength and toughness with excellent corrosion resistance as well as good machinability. In conducting an appropriate heat treatment a maximum hardness of 44 HRC* can be achieved.

As an alternative to the conventionally melted Ergste® 1.4542GG, Ergste® 1.4542GE is available, which is produced by the electro slag remelting (ESR) technique. Hereby the microslag inclusion rate improves significantly.

Typical Fields of Application

- Surgical Instruments
- Cutting Tools, e.g. Rasps
- Medical Screwdrivers
- o Dental Instruments, e.g. Burrs

Weldability

Ergste[®] 1.4542GE/GG shows good weldability with all electric welding methods including resistance welding. In case high toughness is required, bare wire welding within an inert gas atmosphere (TIG) is preferable.

Polishability

Ergste® 1.4542GE/GG is polishable.

Magnetism

Ergste® 1.4542GE/GG is magnetizable.

* Maximum hardness achievable under ideal hardening conditions

Corresponding Standards

- o 1.4542 (X5CrNiCuNb16-4) acc. to DIN EN 10088-3
- o 1.4542 (X5CrNiCuNb16-4) acc. to NF S 94-090
- AISI 630 (UNS S17400) acc. ASTM F899 and A564

Typical Chemical Composition *

С	Mn	Cr	Ni	Cu	Nb	S
0.035	0.35	17.00	4.00	4.00	0.23	0.015

^{*} Average in mass-%

Mechanical Properties Acc. to ASTM A564/ A564M

Condition	Tensile Strength TS [ksi]	Yield Strength YS [ksi]	Elonga- tion [%]	Reduc- tion of Area [%]	Hardness HRC/HB min.
A	-	-	-	-	max. 38 / 363
H900	≥ 190	≥ 170	≥ 10	≥ 40	40 / 388
H925	≥ 170	≥ 155	≥ 10	≥ 44	38 / 375
H1025	≥ 155	≥ 145	≥ 12	≥ 45	35 / 331
H1075	≥ 145	≥ 125	≥ 13	≥ 45	32/311
H1100	≥ 140	≥ 115	≥ 14	≥ 45	31 /302
H1150	≥ 135	≥ 105	≥ 16	≥ 50	28 / 277
H1150M	≥ 115	≥ 75	≥ 18	≥ 55	24 / 255
H1150D	≥ 125	≥ 105	≥ 16	≥ 50	24 / 255

Physical Properties

Modulus of Elasticity E 70 °F	[ksi]	29,008
Specific Density	[lb/in³]	0.2818
Thermal Conductivity 70 °F	[Btu in/hr ft² °F]	124.1
Coefficient of Thermal Expansion 70 - 210 °F 70 - 390 °F 70 - 570 °F 70 - 750 °F	[µin/in °F]	6.0 6.0 6.2 6.3
Specific Heat 70 °F	[Btu/lb °F]	0.14
Electric Resistivity 70 °F	$[\Omega { m circular-} $ mil/ft]	589.5

Cold Working

For massive cold working the solution annealed condition (Condition A) should be ordered.

Machining

Ergste® 1.4542GE/GG can be satisfactorily machined in the solution annealed as well as in the hardened condition resulting in a good surface.

Hot Working

Forging temperature is $1,650-2,190\,^{\circ}F$. Heat slowly and gradually to approx. $1,470\,^{\circ}F$. Afterwards heat to the required forging temperature. Holding time is approx. $5\,\text{min.}/10\,\text{mm}$ wall thickness. Cool slowly after forging (e.g. in furnace or in dry ashes).

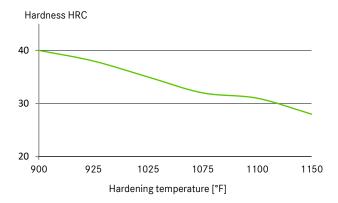
Heat Treatment

Solution Annealing

Temperature: 1,900 ± 25 °F

Cooling: rapid cooling to below 90 °F

Precipitation Hardening


Temperature: 900 - 1,150 °F

Holding time: 1 - 4 h (depending on cross-section)

Cooling: air

Precipitation hardening should be carried out under protective gas or vacuum. To reduce the risk of stress cracking the period between solution treatment and agehardening should be short.

Hardening Chart

Corrosion Resistance

Corrosion resistance is comparable to austenitic grades (e.g. 1.4301); in some cases, due to the high copper content, even better. The special microstructure prevents the risk of intergranular corrosion. Furthermore, Ergste® 1.4542GE/GG in the precipitation hardened condition is resistant against corrosion fatigue and stress cracking corrosion. To achieve this, the precipitation hardening temperature has to be at 1150 °F. At that precipitation hardening temperature Ergste® 1.4542GE/GG is also resistant against stress cracking corrosion in sea water as well as industrial atmosphere.

Zapp Precision Metals GmbH

MEDICAL ALLOYS
Letmather Straße 69
58239 Schwerte
P.O. Box 17 20
58212 Schwerte
Phone +49 2304 79-540
Fax +49 2304 79-482
medicalalloys@zapp.com

www.zapp.com

Further information regarding our products and locations are available in our image brochure and under www.zapp.com

The illustrations, drawings, dimensional and weight data and other information included in this data sheet are intended only for the purposes of describing our products and represent non-binding average values. They do not constitute quality data, nor can they be used as the basis for any guarantee of quality or durability. The applications presented serve only as illustrations and can be construed neither as quality data nor as a guarantee in relation to the suitability of the material. This cannot substitute for comprehensive consultation on the selection of our products and on their use in a specific application. The brochure is not subject to change control. Last revision: July 2020