Alloy 625 | NiCr22Mo9Nb | 2.4856 High Performance Alloys Data Sheet

Zapp is Certified to ISO 9001

Alloy 625

- is a corrosion-resistant nickel-chromiummolybdenum alloy has good resistance properties even at elevated temperatures. Its high nickel, chromium and molybdenum contents promote good resistance to chlorine-induced stress-crack corrosion as well as pitting and crevice corrosion.
- Grade 1 describes the alloy in annealed and Grade 2 the solution annealed form.
- o due to its outstanding hot-strength and wear properties combined with its good resistance to oxidation and carburization, Material 625 can be used at temperatures of up to 1000 °C. For application temperatures above 600 °C, the solution-annealed finish should be selected. In the temperature range between approx. 650 °C and 850 °C, this alloy has a tendency to become brittle. This must be taken into account in the design of the plant/equipment.

Application

- o Offshore engineering plants/equipment
- Plants for the manufacture or processing of sulfuric, phosphoric, nitric, hydrofluoric and hydrochloric acid, as well as organic acids and alkali
- o Flue gas purification systems
- Plants for the processing of oil and natural gas

Further information under:

https://www.zapp.com/en-us/materials/high-performance-alloys-ni-co-ti

Specifications

DIN Designation	NiCr22Mo9Nb			
DIN Material Number	2.4856			
VdTÜV Datasheet	499			
UNS	N06625			
DIN	17744, 17750, 17751, 17752, 17753			
ASTM	B 443, B 444, B 446, B 704, B 705			
ASME	SB 443, SB 444, SB 446, SB 704, SB 705			
BS	3072/NA21, 3074/NA21, 3076/NA21			
SAE	AMS 5599, AMS 5666, AMS 5837			

Delivery Forms

Sheet	hot or cold rolled, heat treated, pickled		
Strip	cold rolled, heat treated pickled or cold rolled, bright annealed		
Pipe	longitudinally welded or seamless, heat treated, pickled or bright annealed		
Rod	rolled or forged, heat treated		
Wire	rolled or drawn		
Forging	heat treated, machined on request		
Welding filler metal	welding bars, wire electrodes, coated bar electrodes		

Do you require other delivery forms or finishes? We will be glad to discuss your needs with you over the phone.

Processing Instructions

Material 625 alloy is cold and hot formable. For degrees of deformation over 15%, we recommend soft annealing followed by quenching in water, in order to achieve the optimum corrosion resistance. Hot forming is carried out in the temperature range between 1175 and 900 °C. All workpieces should be freed of oil, grease, paint and other contaminants prior to heating. A sulfur-free furnace atmosphere that is neutral or slightly oxidizing must be maintained.

Heat Treatment

Stress-relief annealing: 600 – 810 °C

Annealing: 900* – 1050 °C

Solution annealing: 1093 – 1200 °C Heat-up: rapid heat-up is helpful.

Cooling: water, forced inert gas, or forced air

* Minimum temperature

Welding

Alloy 625 can be welded using the GTAW and GMAW gas metal arc welding processes as well as MMA welding processes as joint and build-up welding between like materials. The semi-finished products to be welded should be processed in a stress-free, metallic bright condition and be free of dirt. Care must be taken to apply a low amount of heat during welding. Preheating or secondary heat treatment is generally unnecessary.

Chemical Composition*

	ΑI	С	Co	Cr	Fe	Mn
Min.	-	-	-	21.0	-	-
Max.	0.40	0.030	1.0	23.0	5.0	0.5
	Мо	Nb/Ta	Si	Ti	Ni	
Min.	8.0	3.2	-	-	Bal.	
Max.	10.0	3.8	0.40	0.40	Bal.	
						•

^{*} weight %

Physical Properties

Melting temperature range	1290-1350 [°C]
Density*	8440 [kg · m ⁻³]
Permeability* 1000 Oe	1.01
Modulus of elasticity* (dynamic, solution annealed)	205 [GPa]
Shear modulus* (dynamic, soft annealed)	80 [GPa]
Specific heat*	410 [J · kg ⁻¹ · K ⁻¹]
Thermal conductivity*	9.8 [W · m ⁻¹ · K ⁻¹]
Coefficient of thermal expansion*	12.8 x 10 ⁻⁶ [K ⁻¹]
Specific electrical resistivity*	1.3 [Ω · mm² · m⁻¹]

^{*} at room temperature

Mechanical Properties at Room Temperature*

Condition	Annealed		Solution annealed
Semi-finished product form* Bar	Up to 102 mm	From 102 - 254 mm	All
R _{p 0,2} min [MPa]	410	345	275
R _m [MPa]	825	755	690
A _{min} [%]	30	25	30
-			

^{*} diameter or distance between two parallel surfaces

Mechanical Properties at Elevated Temperatures*

Semi-finished product form* Bar	Strength parameter	Temperature °C				
		Room temp.	100	200	300	400
Cold rolled Annealed	R _{p 0,2} [MPa]	380	350	320	300	280
Cold rolled Annealed	R _m [MPa]	760	740	700	685	670

^{*} acc.to VdTÜV Data Sheet

Welding Filler Metal

	DIN EN ISO	Alloy designation
Bar (GTAW)	18274	Ni 6625
Wire (GMAW)	18274	Ni 6625
Coated bar electrode (MMA)	14172	Ni 6625
	14172	Ni 6625

We will be glad to provide you with information and instructions on machining and processing and on the selection of suitable welding filler metal. Please do not hesitate to call us.

Zapp Precision Metals GmbH

HIGH PERFORMANCE ALLOYS
Zapp-Platz 1
40880 Ratingen
Phone +49 2102 710-204
Fax +49 2102 710-391
highperformancealloys@zapp.com

SERVICE CENTER DEUTSCHLAND
Zapp Precision Metals GmbH
HIGH PERFORMANCE ALLOYS
Hochstraße 32
58425 Unna
www.zapp.com

For further information about our products and locations, please refer to our image brochure or consult our website at $\underline{www.zapp.com}$

The illustrations, drawings, dimensional and weight data and other information included in these data sheets are intended only for the purposes of describing our products and represent non-binding average values. They do not constitute quality data, nor can they be used as the basis for any guarantee of quality or durability. The applications presented serve only as illustrations and can be construed neither as quality data nor as a guarantee in relation to the suitability of the material.

This cannot substitute for comprehensive consultation on the selection of our products and on their use in a specific application. The brochure is not subject to change control.

Last revision: January 2022