
Werkstoff 625 | NiCr22Mo9Nb | 2.4856 High Performance Alloys Datenblatt

Zapp ist zertifiziert nach ISO 9001

Werkstoff 625

- ist eine korrosionsbeständige Nickel-Chrom-Molybdän-Legierung mit guten Eigenschaften auch bei höheren Temperaturen. Die hohen Gehalte an Nickel, Chrom und Molybdän bewirken eine gute Beständigkeit gegen chloridinduzierte Spannungsrisskorrosion sowie Loch- und Spaltkorrosion.
- Werkstoff 625 wird im weichgeglühten Zustand mit Grade 1 und im lösungsgeglühten Zustand mit Grade 2 bezeichnet.
- aufgrund der ausgezeichneten Warmfestigkeits- und Verschleißeigenschaften bei gleichzeitig guter Beständigkeit gegen Oxidation und Aufkohlung ist Werkstoff 625 bis 1000 °C einsetzbar. Für Anwendungstemperaturen über 600 °C sollte die Ausführung lösungs-geglüht gewählt werden. Im Temperaturbereich zwischen ca. 650 °C bis 850 °C neigt diese Legierung zur Versprödung. Dies ist bei der Anlagenauslegung zu berücksichtigen.

Anwendung

- Meerestechnische Anlagen
- Anlagen zur Herstellung oder Verarbeitung von Schwefel-, Phosphor-, Salpeter-, Fluss- und Salzsäure sowie organischen Säuren und Alkalien
- Rauchgasreinigungssysteme
- Anlagen zur Verarbeitung von Erdgas und Erdöl

Siehe auch weiter unter:

 $\underline{\text{https://www.zapp.com/werkstoffe/hochleistungswerkstoffe-ni-co-}} \underline{\text{ti}}$

Spezifikationen

DIN-Kurzzeichen	NiCr22Mo9Nb
Werkstoff-Nummer	2.4856
VdTÜV-Werkstoffblatt	499
UNS	N06625
DIN	17744, 17750, 17751, 17752, 17753
ASTM	B 443, B 444, B 446, B 704, B 705
ASME	SB 443, SB 444, SB 446, SB 704, SB 705
BS	3072/NA21, 3074/NA21, 3076/NA21
SAE	AMS 5599, AMS 5666, AMS 5837

Lieferformen

Blech	warm- oder kaltgewalzt, wärmebehandelt, gebeizt			
Band	kaltgewalzt, wärmebehandelt, gebeizt oder kaltgewalzt, blankgeglüht			
Rohr	längsnahtgeschweißt oder nahtlos, wärmebehandelt, gebeizt oder blankgeglüh			
Stange	gewalzt oder geschmiedet, wärmebehandelt			
Draht	gewalzt oder gezogen			
Schmiedestück	wärmebehandelt, auf Wunsch bearbeitet			
Schweißzusatz- werkstoff	Schweißstäbe, Drahtelektroden, umhüllte Stabelektroden			

Benötigen Sie andere Lieferformen oder Ausführungen? Wir freuen uns auf Ihren Anruf.

Alle Angaben erfolgen nach bestem Wissen, jedoch ohne Gewähr. Empfehlungen über die Verwendbarkeit von Werkstoffen bzw. von Erzeugnissen dienen der Beschreibung und bedürfen stets gesonderter partnerschaftlicher Vereinbarungen.

Verarbeitungshinweise

Werkstoff 625 ist kalt und warm umformbar. Bei Kaltumformgraden über 15 % empfehlen wir ein Weichglühen gefolgt von Abschrecken in Wasser, um die optimale Korrosionsbeständigkeit zu erreichen. Das Warmumformen erfolgt im Temperaturbereich von 1175 bis 900 °C. Alle Werkstücke sollen vor dem Erwärmen von Öl, Fett, Farbe und anderen Verunreinigungen befreit werden. Eine schwefelfreie, neutrale oder leicht oxidierende Ofenatmosphäre ist einzustellen.

Wärmebehandlung

Spannungsarmglühen: 600 – 810 °C Weichglühen: 900* – 1050 °C Lösungsglühen: 1093 – 1200 °C

Aufheizen: Ein rasches Aufheizen ist zweckmäßig. Abkühlen: Wasser, bewegtes Schutzgas oder bewegte

Luft

Schweißen

Werkstoff 625 kann nach den Schutzgasschweißverfahren WIG und MIG sowie dem Lichtbogenschweißverfahren E-Hand als Verbindungs- und Auftragsschweißung artgleich eingesetzt werden. Die zu verschweißenden Halbzeuge sollen im spannungsfreien, metallisch blanken und schmutzfreien Zustand verarbeitet werden. Beim Schweißen ist auf ein geringes Wärmeeinbringen zu achten. Ein Vorwärmen oder eine Wärmenachbehandlung sind in der Regel nicht erforderlich.

Chemische Zusammensetzung*

	ΑI	С	Co	Cr	Fe	Mn
Min.	-	-	-	21,0	-	-
Max.	0,40	0,030	1,0	23,0	5,0	0,5
	Мо	Nb+Ta	Si	Ti	Ni	
Min.	8,0	3,2	-	-	Rest	
Max.	10,0	3,8	0,40	0,40	Rest	

^{*} Gewichtsprozent

Physikalische Eigenschaften

Schmelzbereich	1290-1350 [°C]		
Dichte*	8440 [kg · m ⁻³]		
Permeabilität* 1000 Oersted	1,01 [Oe]		
Elastizitätsmodul* (dynamisch, lösungsgeglüht)	205 [GPa]		
Schubmodul* (dynam., weichgeglüht)	80 [GPa]		
Spezifische Wärme*	410 [J · kg ⁻¹ · K ⁻¹]		
Wärmeleitfähigkeit*	9,8 [W · m ⁻¹ · K ⁻¹]		
Wärmeausdehnungs- beiwert 21-93 °C	12,8 x 10 ⁻⁶ [K ⁻¹]		
Spezifischer elektr. Widerstand*	1,3 [Ω · mm² · m⁻¹]		

^{*} bei Raumtemperatur

Mechanische Eigenschaften bei Raumtemperatur

Zustand	Weichgeglüht		Lösungsgeglüht	
Halbzeugform* Stange	bis 102 mm	von 102 – 254 mm	alle	
R _{p 0,2} min [MPa]	410	345	275	
R _m [MPa]	825	755	690	
A _{min} [%]	30	25	30	

^{*} Durchmesser bzw. Abstand zwischen zwei parallelen Flächen

Mechanische Eigenschaften Bei erhöhten Temperaturen*

Halbzeugform Blech	Festigkeits- kennwerte	Temperatur °C				
		Raum- temp.	100	200	300	400
kaltgewalzt weichgeglüht	R _{p 0,2} [MPa]	380	350	320	300	280
kaltgewalzt weichgeglüht	R _m [MPa]	760	740	700	685	670

^{*} nach VdTÜV

Schweißzusatzwerkstoffe

	DIN EN ISO	Legierungs- kurzzeichen
Stab (WIG)	18274	Ni 6625
Draht (MIG)	18274	Ni 6625
Umhüllte Stab- elektrode (E-Hand)	14172	Ni 6625

Gerne geben wir Ihnen Auskünfte und Hinweise zur Be- und Verarbeitung und zur Wahl des geeigneten Schweißzusatzwerkstoffes. Bitte rufen Sie uns an.

^{*} Mindesttemperatur

Zapp Precision Metals GmbH

HIGH PERFORMANCE ALLOYS
Zapp-Platz 1
40880 Ratingen
Tel +49 2102 710-204
Fax +49 2102 710-391
highperformancealloys@zapp.com

SERVICE CENTER DEUTSCHLAND
Zapp Precision Metals GmbH
HIGH PERFORMANCE ALLOYS
Hochstraße 32
58425 Unna
www.zapp.com

Weitere Informationen zu unseren Produkten und Standorten erhalten Sie in unserer Imagebroschüre sowie auf unserer Homepage unter www.zapp.com

Die in diesen Datenblättern enthaltenen Angaben, Abbildungen, Zeichnungen, Maß- und Gewichtsangaben sowie sonstigen Daten dienen lediglich der Beschreibung unserer Produkte und sind unverbindliche Durchschnittswerte. Sie stellen keine Beschaffenheitsangabe dar und begründen keine Beschaffenheits- oder Haltbarkeitsgarantie. Die dargestellten Anwendungen dienen ausschließlich der Illustration und sind hinsichtlich der Einsetzbarkeit der Werkstoffe weder als Beschaffenheitsangabe noch als Garantie zu betrachten. Dies kann eine eingehende Beratung zur Auswahl unserer Produkte und zu deren Einsatz für eine konkrete Anwendung nicht ersetzen. Diese Broschüre unterliegt nicht dem Änderungsdienst.