20AP Free-Cutting Datasheet Medical Wire

zapp

Zapp is certified according to ISO 9001

20AP is a hardenable, free-cutting carbon steel medical wire characterized by excellent machinability. The grade has high hardness, high wear resistance and exceptional dimensional stability after hardening.

Applications

20AP is used for dental applications such as dental burrs and drills.

Chemical Composition (nominal) %

С	Si	Mn	Р	S	Pb
1.0	0.2	0.4	≤ 0.030	0.05	0.2

Forms of Supply

Forms of supply/ finishes	Diameter	Cu-Sn coating	Standard tolerance	Length
	mm			m
Wire in coils				
Drawn	0.80 - 1.60	-	D4	-
	1.60 - 2.50	-	D4	-
Straightened wire				
Drawn	0.80 - 1.15	-	D4	2
	1.15 - 2.00	-	D4	2
	2.00 - 2.50	-	D3	2
Drawn/ground	2.00 - 3.00	-	h7	2
	3.00 - 6.00	-	h7	3
	6.00 - 12.00	-	h7	3

Other sizes on request.

Ovality: For D1 and D2, max. 50 % of the tolerance width, for D3 max. 25 % of the tolerance width.

Mechanical Properties

Forms of supply/Finishes	Diameter	Tensile strength	Proof strength	Elongation
	mm	Rm ¹⁾	Rp0.2 ¹⁾²⁾	A ¹⁾³⁾
		MPa	MPa	%
Wire in coils	0.80 - 1.60	770	-	-
Drawn	1.60 - 2.50	720	770	4
Straightened wire	0.80 - 1.15	> 980	720	7
Drawn	1.15 - 2.00	> 920	> 910	3
Drawn/ground	2.00 - 2.50	> 900	> 850	5
	2.00 - 3.00	> 920	> 830	7
	3.0 - 6.00	810	> 850	6
	6.00 - 12.00	750	670	10
			620	12

1) Nominal values. Other properties on request.

2) Rp0.2 and elongation values are given for information only.

Impact Strength

Quenching time and temperature is dependent on material size, the specimens for impact strength are larger than standard wire.

Table of impact strength for 20AP, hardened and quenched condition (soaking temperature 800 °C and soaking time 10 min; tempering time is 30 min)

Tempering temperature, °C	Impact strength, J
200	1.3
300	2.0
400	7.3
500	10.0
600	17.0

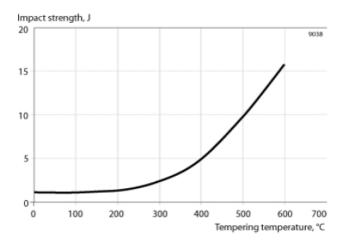


Figure 1. Impact strength after recommended hardening procedures, valid for all dimensions. Soaking time 30 minutes. Standard Charpy-V specimens at 20 °C. Physical Properties Density: annealed 7.8 g/cm³, 0.28 lb/in³ Resistivity: Cold drawn, 0.18 $\mu\Omega m$ Heat treated, 0.21 $\mu\Omega m$

Thermal expansion ¹⁾					
Temperature, °C	20-100	20-200	20-300		
Cold drawn	11.5	11.5	12.5		
Heat treated	11.5	12.0	12.5		

 $^{1)}$ Mean values in temperature ranges (x10 $^{-6})$

20AP is a magnetic material.

Heat Treatment

Soft-annealing

When required, soft-annealing should be conducted for a period of one hour at a temperature of 650 - 680 °C.

Hardening

Diameter	Temperature	Soaking time	Quenching	
mm	°C	approx. min.		
≤ 5	800 - 820	3 - 6	in oil at 50 °C	
> 5	790 - 810	6 - 10	in water	

The smaller the diameter, the shorter the soaking time. To avoid oxidation and decarburization, hardening should be conducted in a protective gas atmosphere using nitrogen, argon or a vacuum.

Contact Zapp for further advice.

Prolonged service at elevated temperatures causes decreased hardness when used in the hardened and tempered condition. See also "Impact strength".

Tempering				
Temperature, C	100 - 600			
Tempering time, min	30 - 60			

The core of the material needs a tempering time of at least 30 minutes. To reduce the risk of cracking, tempering should be conducted immediately after hardening. The heating rate should not be too high, particularly in the case of intricately shaped components.

Hardness

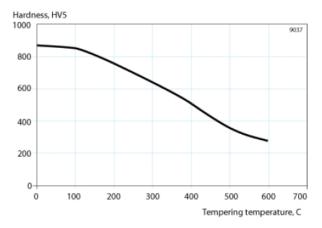


Figure 2. Hardness after recommended hardening procedures, valid for all dimensions. Soaking time: 30 minutes.

Machining

The recommended values are to be regarded as starting data. To obtain the optimal combination of finishes, tolerances and productivity the values should be adjusted for each individual operation. The data assumes the use of a suitable cutting fluid. If machining without a cutting fluid, the values should be reduced by about 10 %.

In the manufacture of sophisticated precision components, the material's highly uniform and very good machinability offers reliable production with high productivity. This is of major importance since component processing costs can be several hundred times greater than the cost of the raw material. Material in the drawn condition up to \emptyset 3 mm has a Cu/Sn surface layer. The layer enables components to be machined by lathes equipped with guide bushing.

Turning

The charts below give guidance of how speed and feed affect diameter tolerances and surface roughness of turned components. The charts are based on longitudenal turning. The tolerances are given by using the ISO system, i.e. IT7 could mean h7, k7 or js7.

The tools used in Figure 3 - 6 were brazed cemented carbide tools and in Figure 7 indexable cemented carbide inserts.

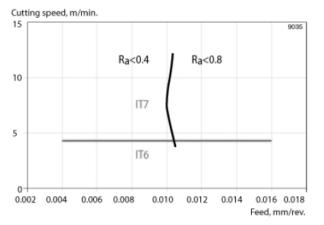


Figure 3. Wire diameter 1.20 mm, high tensile strength, drawn condition, depth of cut between 0.2 - 0.3 mm. Brazed cemented carbide.

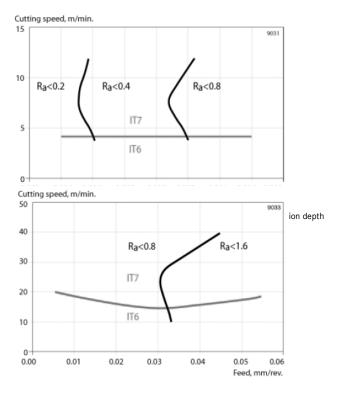


Figure 5. Wire diameter 3.00 mm, drawn condition, depth of cut between 0.4 - 0.6 mm. Brazed cemented carbide.

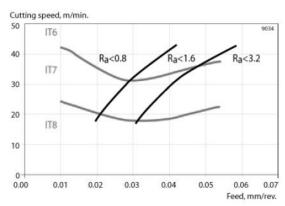


Figure 7. Wire diameter 6.0 mm, ground condition, depth of cut between 0.2 - 0.5 mm. Indexable cemented carbide inserts.

CNC lathes and similar

Indexable insert tools. For diameters d < approx. 20 mm lower cutting speeds should be used.

Cutting speed			
m/min.			
GC 4015	CT525	GC 235	
CT 5015	GC 4025	GC 4035	
310	225	-	
200	190	180	
-	-	150	
	m/min. GC 4015 CT 5015 310 200	m/min. GC 4015 CT525 CT 5015 GC 4025 310 225 200 190	m/min. GC 4015 CT525 GC 235 CT 5015 GC 4025 GC 4035 310 225 - 200 190 180

Bar automatics

Diameter > approx. 2 mm

Tool	Cutting speed
	m/min.
СС	45 - 55
HSS	25 - 35

Single and multiple spindle automatic lathes

Diameter > approx. 10 mm

Operation	Finish turning	Rough turning	
	Feed, mm/rev.		
Single point	0.05 - 0.10	0.10 - 0.25	
Forming	0.01 - 0.03	0.03 - 0.08	
Plunge cutting and parting off	0.02 - 0.05	0.05 - 0.10	

Longitudinal turning automatics, plunging automatics and similar machines

Diameter < approx. 10 mm	Cutting depth	Finish turning ¹⁾	Medium	Rough turning ²⁾
Operation	mm	Feed, mm/rev.		
Single point turning	< 1	0.005 - 0.01	0.01 - 0.015	0.025
Forming	1 - 3	0.02 0.01	0.03 0.02	0.05 0.03
Plunge cutting and parting off	> 3	0.005 0.01	0.015 0.02	0.03 0.04

¹⁾ For parts requiring high precision.

²⁾ For parts with moderate tolerance requirements and parts that subsequently must be finish machined.

Parting off and grooving

Parting off in CNC lathes and similar

Tool	Feed	Cutting speed
	mm/rev.	m/min.
GC 235, 4025	0.05 - 0.15	55 - 110
HSS	0.02 - 0.05	25 - 35

Threading

Tool	Grade	Cutting speed	
		m/mm.	
Threading dies	HSS	3 - 6	
Self-opening die heads	HSS	5 - 10	
Thread chasers	HSS CC	20 - 35 80 - 135	
Thread rolling	HSS CC	10 - 15 15 - 20	
Thread turning	GC1020	80 - 100	

Drilling

Drill diameter	Feed	Speed	
mm	mm/rev.	rpm	
0.5	0.005	2,650	
1	0.01	2,500	
31)	0.03	1,500	
5 ¹⁾	0.05	1,200	
81)	0.07	900	
10 ¹⁾	0.09	700	

¹⁾ Cemented carbide drills of Delta type with the following data can also be used:

Grade GC1020, speed 60 - 100 m/min.

Milling

Operation	Grade	Feed	Cutting speed	
		mm/tooth	m/mm.	
Finish milling with high cutting speed under favorable working conditions	530 or 1025	0.1 0.2	140 - 180 110 - 150	
Finish and medium-rough milling under normal to difficult working conditions	4030 or 4040	0.1 0.2	130 - 160 100 - 125	
Medium-rough to rough milling under difficult conditions	SM30 or 4040	0.1 0.2	90 - 110 80 - 90	

End milling

Tool type	Grade	Cutting speed	
	CC	m/mm.	
Indexable-insert tools	530	190	
Solid carbide end mills	4030 4040	165 135	
Brazed helical fluted end mills	GC1020 P40	120 40	

Hobbing

ΤοοΙ	Cutting speed	
	m/min.	
СС	30 - 60	
HSS	25 - 50	

Reaming

Cutting speed for diameters > about 2 mm

Reamer	Grade	Cutting speed	
		m/min.	
Straight/helical fluted	HSS CC	10 25	
Gun drill geometry	HSS	15	

Feed

Diameter	Feed	Allowance
mm	mm/rev.	mm
1 - 5	0.05 - 0.10	0.05 - 0.10
6 - 10	0.10 - 0.20	0.10 - 0.20
11 - 20	0.15 - 0.30	0.20 - 0.30

All data are nominal. Values refer to 20 °C unless otherwise stated. For other requirements and further information please contact Zapp.

Zapp Precision Metals (Sweden) AB PRECISION WIRE Järnverksleden 18 811 34 Sandviken Sweden Phone +46 26 265467 precisionmetals-sweden@zapp.com www.zapp.com

The illustrations, drawings, dimensional and weight data and other information included in this data sheet are intended only for the purposes of describing our products and represent non-binding average values. They do not constitute quality data, nor can they be used as the basis for any guarantee of quality or durability. The applications presented serve only as illustrations and can be construed neither as quality data nor as a guarantee in relation to the suitability of the material. This cannot substitute for comprehensive consultation on the selection of our products and on their use in a specific application. The brochure is not subject to change control. Last revision: January 2020