

Powder metallurgy HSS

CHEMICAL COMPOSITION

C	Cr	Мо	W	V
2.48	4. 20	3.10	4.20	8.00

STANDARDS

Europe: HS 4-3-8 Germany: 1.3352

DELIVERY HARDNESS

Soft annealed max. 300 HB Cold drawn max. 340 HB Cold rolled max. 340 HB

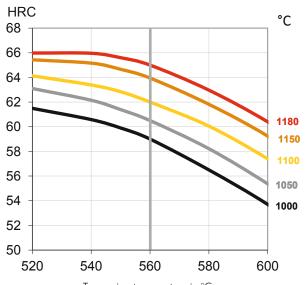
DESCRIPTION

ASP®2053 is a high V-alloyed grade with excellent abrasive wear resistance and toughness.

APPLICATIONS

- Cold work tools
- Wood tools
- Paper cutting knives Extrusion
- Stamping
- · Textile knives
- Fine blanking
- Rolls

FORM SUPPLIED


- Coils
- Sheets
- Round bars
- Discs
- Forged blanks
- Flat & square bars

Available surface conditions: drawn, ground, peeled, rough machined, hot rolled.

HEAT TREATMENT

- Softannealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- Stress-relieving at 600-700°C approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere at a temperature suitable for chosen working hardness. Pre-heating in 2 or 3 steps depending on tool dimensiondesign and austenetising temperature, last step 50°C below chosen austenitising temperature. Cooling down to 40-50°C.
- Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature (25°C) between temperings.

GUIDELINES FOR HARDENING

Tempering temperature in °C Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

ASP®2053 can be worked as follows:

- Machining (grinding, turning, milling)
- Polishing
- Plastic forming
- Electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

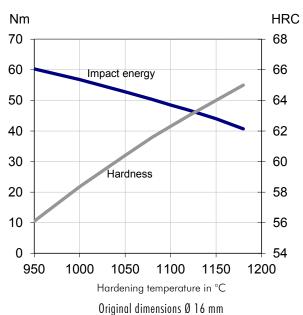
GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can furnish advice on the choice of grinding wheels.

SURFACE TREATMENT

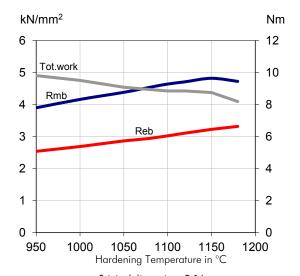
The steel grade is a good substrate material for PVD and CVD coating. If nitriding is requested a small zone of 2-15 μm is recommended. The steel grade can also be steam-tempered if so desired.

Zapp Precision Metals GmhH TOOLING ALLOYS Zapp-Platz 1 40880 Ratingen Germany Phone +49 2102 710-7200 Fax +49 2102 710-596 www.zapp.com


PHYSICAL PROPERTIES

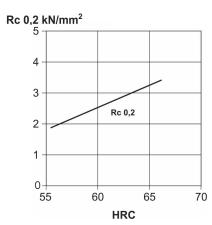
Temperature	20°C	400°C	600°C
Density g /cm³ (1)	7.7	7.6	7.5
Modulus of elasticity kN/mm² (2)	250	220	200
Thermal expansion coefficient from 20°C per °C (2)	-	12,1x10 ⁻⁶	12,7x10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg °C (2)	420	510	600

(1) = Soft annealed


(2) = Hardened 1180°C and tempered 560°C, 3x1 hour

IMPACT ENERGY

Tempering 3 x 1 hour at 560° C


4-POINT BEND STRENGTH

Original dimensions Ø 16 mm Tempering 3 x 1 hour at 560°C Dimensions of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm²
Reb = Bend yield strength in kN/mm²
Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

Test piece with 10 mm waist diameter

COMPARATIVE PROPERTIES

MACHINING DATA

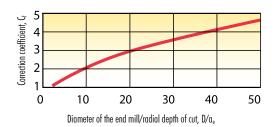
ASP® 2053

Recommendations for machining in soft annealed condition, 260-300 HB

TURNING	CEMENTED	CARBIDE		
	Medium turning Finishing tu		HSS	
Cutting speed, v _c (m/min)	80-110	110-130	10-15	
Feed, f (mm/rev)	0.2–0.4	0.05-0.2	0.05-0.3	
Cutting depth, ap(mm)	2–4	0.5-2	0.5-3	
Tools according to ISO	coated carbide P10-P20	coated carbide P10	coated	

Use a wear resistant coated cemented carbide e.g Coromant 4015 or Seco TP 100. Black ceramics are usually the best tools at finish turning, e.g. Coromant 650 or Feldmühle SH20.

END MILLING		DIAMETER (mm)				
SLOT MILLING		3-5	5-10	10-20	20-30	30-40
Coated HSS	Cutting speed, v_c (m/min) Feed, f_z (mm/tooth)	15-20 0.005-0.01	15-20 0.01-0.02	15-20 0.02-0.03	15-20 0.03-0.05	15-20 0.05-0.07
Coated solid cemented carbide	Cutting speed, v_c (m/min) Feed, f_z (mm/tooth)	40-45 0.006-0.01	40-45 0.01-0.02	40-45 0.02-0.04	- -	- -
Indexable carbide tips	Cutting speed, v_c (m/min) Feed, f_z (mm/tooth)	-	-	80-110 0.06-0.10	80-110 0.10-0.12	80-110 0.15-0.20
Suitable tools	-	coated carbide, K15, P25				


SIDE MILLING

The same cutting speed can be used in side milling as in slot milling. However, the feed has to be adjusted to produce an adequate chip thickness.


The diameter of the mill (D) over the radial depth of cut (a_e) is used as a parameter. Read the correction coefficient (C_f) from the diagram and multiply by the feed for slot milling from the table above.

Comments (slot and side milling)

- 1. Coated tools are always recommended for end milling both with HSS tools and cemented carbide tools. TiCN, TiAlN or multilayer (Futura) is preferred.
- **2.** The cutting speed must be decreased considerably if uncoated tools are used.

Example	
Tool	End mill with indexable tips
Diameter of the end mill	D=40 mm
Radial depth or cut	a _e =2mm
D/a _e	40/2=20
Correction coefficient	$c_f = 2.8$
Feed	f_z =2.8x0.17=0.48mm/tooth
Cutting speed	v_c =50m/min

SQUARE SHOULDER	RADIAL DEPTH OF CUT, a.			
MILLING	α _e =0.1 x D	$\alpha_{\rm e} = 0.5 \times D$	$\alpha_{\rm e} = 1 \times D$	
Cutting speed, v _c (m/min)	120-140	100-120	80-110	
Feed, f _z (mm/tooth)	0.25	0.25 0.15		
Tools according to ISO	coated cemented carbide K15, P25			

Use a wear resistant coated cemented carbide e.g Coromant 3020 or Seco TP10.

Palling	DRILL DIAMETER (mm)					
DRILLING		1-5	5-10	10-20	20-30	30-40
HSS	Cutting speed, v _c (m/min) Feed, f _z (mm/rev)	5-10 0.05-0.15	5-10 0.15-0.25	5-10 0.25-0.35	5-10 0.35-0.40	5-10 0.40-0.45
Coated HSS	Cutting speed, v_c (m/min) Feed, f_z (mm/rev)	15-20 0.05-0.15	15-20 0.15-0.25	15-20 0.25-0.35	15-20 0.35-0.40	15-20 0.40-0.45
Short hole drill indexable (cemented carbide)	Cutting speed, v _c (m/min) Feed, f _z (mm/rev)	-	-	-	90-110 0.08-0.12	90-110 0.10-0.14
Solid cemented carbide	Cutting speed, v _c (m/min) Feed, f _z (mm/rev)	-	-	35 0.1-0.15	35 0.1-0.15	35 0.1-0.15
Brazed cemented carbide	Cutting speed, v _c (m/min) Feed, f _z (mm/rev)	-	-	30 0.1-0.2	30 0.1-0.2	30 0.1-0.2

TiCN or TiAlN multi layer are recommended coatings for HSS drilling.

MACHINING IN HARDENED CONDITION

ASP®2053 has been machined in hardened condition up to 65 HRC. CBN tools are recommended. Whisker reinforced ceramics (Coromant 670 or Kennametal 4300) can be used in turning, but the tool life is shorter and more difficult to predict.