Grade 316, 1.4401, UNS S31600 Wirelines, Slicklines, Data Sheet Zapp Quality System certified to ISO 9001:2015 # Grade 316, 1.4401, UNS S31600 from Zapp for - Armoring applications on electromechanical cables - Wirelines/ Slicklines for down hole service applications #### Characteristics ZAPP 316, UNS S31600, DIN No. 1.4401 is an austenitic stainless steel that provides good corrosion resistance in CO_2 well environments. The ZAPP Grade 316 stainless steel is our entry level CRA (corrosion resistant alloy) product for oil patch applications. It contains about 17% chromium, 12% nickel, and 2.5% molybdenum, which readily enables it to replace conventional carbon/plow steel in corrosive environments. ## For further applications for the oil and gas industry click here. The material offers good resistance to pitting and crevice corrosion, but is not recommended for use in H_2S environments. Performance in these areas is often measured using Critical Pitting Temperatures (CPT), Critical Crevice Temperatures (CCT), and Pitting Resistance Equivalent Numbers (PREN). ASTM Standard Test Methods G 48 is also referenced. It covers the procedures for the determination of the resistance of various alloys to pitting and crevice corrosion. #### Chemistry Standards of Grade 316 stainless steel - o AISI 316 - o UNS S31600 - Alloy-No. 1.4401 - o ASTM A580 For comparison purposes, PREN and CPT numbers are presented for these alloys: #### PREN and CPT Numbers* | Alloy | PREN | CPT (°F) | CPT (°C) | |-------------|------|----------|----------| | ZAPP 316 | 26 | 72 | 22 | | ZAPP 2205 | 36 | 108 | 42 | | ZAPP XM19 | 38 | 106 | 41 | | ZAPP 2507 | 41 | 143 | 61 | | ZAPP 28 | 40 | 129 | 54 | | ZAPP 25-6MO | 47 | 149 | 65 | | ZAPP 27-7MO | 56 | 176 | 80 | | ZAPP MP35N | 53 | 183 | 84 | | ZAPP C276 | 68 | >302 | >150 | ^{*}PREN = Cr + 3.3 Mo + 30N #### Weight per Foot (lbs.) for Wirelines | Alloy | .082" | .092" | .108" | .125" | .140" | .150" | .160' | |-----------------|-------|-------|-------|-------|-------|-------|-------| | ZAPP 316 | 0.018 | 0.023 | 0.031 | 0.042 | 0.053 | 0.060 | 0.069 | | ZAPP
2205 | 0.018 | 0.022 | 0.031 | 0.041 | 0.052 | 0.059 | 0.06 | | ZAPP
XM19 | 0.018 | 0.023 | 0.031 | 0.042 | 0.053 | 0.060 | 0.069 | | ZAPP
2507 | 0.018 | 0.022 | 0.031 | 0.041 | 0.052 | 0.059 | 0.068 | | ZAPP 25-
6MO | 0.018 | 0.023 | 0.032 | 0.043 | 0.054 | 0.062 | 0.070 | | ZAPP 27-
7MO | 0.018 | 0.023 | 0.032 | 0.043 | 0.054 | 0.062 | 0.070 | | ZAPP
MP35N | 0.020 | 0.025 | 0.034 | 0.046 | 0.057 | 0.066 | 0.07 | | ZAPP
C276 | 0.018 | 0.022 | 0.031 | 0.041 | 0.052 | 0.059 | 0.068 | ^{*}CPT (°C) = 2.5 Cr + 7.6 Mo + 31.9 N - 41 #### **Limiting Chemical Composition of ZAPP Grade 316** | Ni | Cr | Мо | N | С | Mn | Fe | |---------------|---------------|-------------|-----------|-----------|-----------|-----------| | 10.00 - 14.00 | 16.00 - 18.00 | 2.00 - 3.00 | 0.10 max. | 0.08 max. | 2.00 max. | remainder | Tensile strengths in the order of 205/260,000 psi are achieved through cold drawing. At these strength levels, the wire is ductile and able to successfully pass the wrap test in the as drawn condition as well as the as drawn plus exposed to temperatures as high as 300°F conditions. This wrap or bend test shows no surface cracking or failure in either condition # Physical Properties of ZAPP 316 at Room Temperature Are as Follows | Density | 0.287 [lb/in³] /
7.94 [g/cm³] | |---|--| | Melting Range | 2,500 - 2,550 [°F] /
1,370 - 1,400 [°C] | | Specific Heat | 0.12 [Btu/lb·°F] /
500 [J/kg·°C] | | Electrical Resistivity | 445 [ohm·circ mil/ft] /
0.74 [μ · m] | | Permeability at 200 Oersted (15.9 kA/m) | 1.02 max. [annealed] | | Young´s Modulus at 70 °F (21 °C) | 28.0 [10³ksi] /
193.0 [GPa] | | Thermal Expansion at 200 °F (100 °C) | 8.90 [in/in/°F · 10 ⁻⁶] /
16.0 [cm/cm/°C · 10 ⁻⁶] | | • | | Grade 316 stainless steel is also identified as UNS S31600. Wire products are covered by ASTM A580. Materials produced to the UNS S31600 chemistry ranges and manufactured into armor wire or wirelines by Zapp Precision Wire will provide an excellent quality product. Zapp Precision Wire technology, quality, and superior wire drawing capabilities will make the difference for these critical applications. The Zapp Precision Wire quality system is registered to ISO-9001:2008. For additional information on this or any other Zapp Precision Wire product, please contact the Customer Service Department at 843-851-0700 or fax your inquiry to 843-851-0010, or e-mail the inquiry to sales@zapp.com. Please find further materials for wireline products here. # Zapp Technical Data #### **Alloy Chemistry** | Alloy | UNS | С | Mn | Cr | Ni | Мо | Cu | N | Со | Ti | Fe | |--------------|--------|-----|-----------|-------------|-------------|-------------|-----------|-------|------|-----|-----------| | ZAPP 316 | S31600 | .08 | 2.0 | 16.0 - 18.0 | 10.0 - 14.0 | 2.0 - 3.0 | - | - | - | - | bal. | | ZAPP 2205 | S32205 | .03 | 2.0 | 21.0 - 23.0 | 4.5 - 6.5 | 2.5 - 3.5 | - | .18 | - | - | bal. | | ZAPP XM19 | S20910 | .06 | 4.0 - 6.0 | 20.5 - 23.5 | 11.5 - 13.5 | 1.5 - 3.0 | - | .2040 | - | - | bal. | | ZAPP 2507 | S32750 | .03 | 1.2 | 25.0 | 7.0 | 4.0 | - | .30 | - | - | bal. | | ZAPP 25-6MO | NO8926 | .02 | 2.0 | 19.0 - 21.0 | 24.0 - 26.0 | 6.0 - 7.0 | 0.5 - 1.5 | .1525 | - | - | bal. | | ZAPP 27-7 MO | S31277 | .02 | 3.0 | 20.5 - 23.0 | 26.0 - 28.0 | 6.6 - 8.0 | 0.5 - 1.5 | .3040 | _ | - | bal. | | ZAPP MP35N | R30035 | .02 | 0.1 | 19.0 - 21.0 | 33.0 - 37.0 | 9.0 - 10.5 | - | - | bal. | 1.0 | 1.0 | | ZAPP C276 | N10276 | .01 | 1.0 | 14.5 - 16.5 | - | 15.0 - 17.0 | - | - | 2.5 | - | 4.0 - 7.0 | (Maximum values unless range specified) #### Armor Wire Typical Tensile Strength Ranges (ksi) | Size | ZAPP 316 | ZAPP XM19 | ZAPP 25-6MO | ZAPP 27-7MO | ZAPP MP35N | |-----------|----------|-----------|-------------|-------------|------------| | .020"029" | 230/265 | 250/280 | 245/275 | 255/280 | 275/300 | | .030"066" | 225/260 | 245/280 | 240/275 | 255/280 | 275/300 | # Wireline Minimum Break Strength** | Size | ZAPP 316 | ZAPP 2205 | ZAPP XM19 | ZAPP 2507 | ZAPP 25-6MO | ZAPP 27-7MO | ZAPP MP35N | ZAPP C276 | |-------|----------|-----------|-----------|-----------|-------------|-------------|------------|-----------| | .082" | 1150# | 1345# | 1215# | 1345# | 1175# | 1300# | 1300# | 1280# | | .092" | 1500# | 1690# | 1540# | 1690# | 1500# | 1650# | 1690# | 1615# | | .108" | 2000# | 2240# | 2215# | 2240# | 2150# | 2250# | 2300# | 2210# | | .125" | 2700# | 2945# | 3000# | 2975# | 2800# | 3000# | 3100# | 2935# | | .140" | 3300# | 3540# | 3540# | 3694# | 3480# | 3670# | 3725# | 3680# | | .150" | 3750# | 3975# | 4065# | 4150# | 3950# | 4155# | 4240# | 4205# | | .160" | 4225# | 4425# | 4625# | 4665# | 4350# | 4650# | 4825# | 4785# | ^{(**} The recommended **safe working load** is 60% of minimum break strength) # Density/Corrosion | Alloy | Density (lb/in³) | Corrosion (PREN)* | CPT (°F) | CPT (°C)** | | |-------------|------------------|-------------------|----------|------------|--| | ZAPP 316 | .287 | 26 | 72 | 22 | | | ZAPP 2205 | .278 | 36 | 108 | 42 | | | ZAPP XM19 | .285 | 38 | 106 | 41 | | | ZAPP 2507 | .281 | 41 | 144 | 62 | | | ZAPP 25-6MO | .290 | 47 | 149 | 65 | | | ZAPP 27-7MO | .289 | 56 | 176 | 80 | | | ZAPP MP35N | .309 | 53 | 183 | 84 | | | ZAPP C276 | .321 | 68 | >302 | >150 | | ^{*} PREN = Cr + 3.3 Mo + 30N # Examples of Theoretical Acceptable Well Environments for ZAPP 316 Wire* | Temp °F | H₂S | CO ₂ | Pressure
(PSI) | Req. Minimum
Pitting Index (PI) | ZAPP 316
(PI) | ZAPP 316
(PREN) | |---------|--------------------------|---------------------------------|---|---|--|---| | 325 | 0 % | 6 % | 12,000 | 16.50 | 25.25 | 26 | | 106 | 0 % | 5 % | 1,100 | 13.00 | 25.25 | 26 | | 275 | 0 % | 8 % | 3,000 | 16.50 | 25.25 | 26 | | 240 | 0 % | 10 % | 3,500 | 13.00 | 25.25 | 26 | | 276 | 0 % | 0.5 % | 13,000 | 16.50 | 25.25 | 26 | | | 325
106
275
240 | 325 0 % 106 0 % 275 0 % 240 0 % | 325 0% 6%
106 0% 5%
275 0% 8%
240 0% 10% | (PSI) 325 0 % 6 % 12,000 106 0 % 5 % 1,100 275 0 % 8 % 3,000 240 0 % 10 % 3,500 | (PSI) Pitting Index (PI) 325 0 % 6 % 12,000 16.50 106 0 % 5 % 1,100 13.00 275 0 % 8 % 3,000 16.50 240 0 % 10 % 3,500 13.00 | (PSI) Pitting Index (PI) (PI) 325 0 % 6 % 12,000 16.50 25.25 106 0 % 5 % 1,100 13.00 25.25 275 0 % 8 % 3,000 16.50 25.25 240 0 % 10 % 3,500 13.00 25.25 | * The theoretical acceptable well environments are based on the SOCRATES software. SOCRATES is a comprehensive material selection tool for oil and gas applications that selects corrosion resistant alloys (CRA) through material evaluation based on mechanical strength parameters, heat treatment/cold work and hardness limitations. The program also evaluates the characterization of the environment in terms of operating pressure, temperature, pH, H_2S , chlorides, elemental sulfur, aeration, gas to oil ratio and water to gas ratio water cut. Stress corrosion cracking, hydrogen embrittlement cracking, sulfide stress cracking and resistance to pitting corrosion are also evaluated. The examples above are based on the environment listed and do not take into consideration the actual values of elemental sulfur, aeration, gas to oil ratio and water to gas ratio water cut. PI = Cr + 3.3Mo + 11N + 1.5(W+Nb) PREN = Cr + 3.3Mo + 30N **Note:** The information in the Socrates summary report does not represent a commitment by Honeywell InterCorr International or Zapp Precision Wire, Inc. The information contained in this document and the Socrates software is purely advisory in nature. In no event shall Honeywell InterCorr, Zapp Precision Wire, Inc., or their employees or agents have liability for damages, including but not limited to, consequential damages arising out of or in connection with any person's use or inability to use the information in this document. #### **Nominal Chemical Composition Comparison** | Chemical
Element | ZAPP 316 | ZAPP 2205 | ZAPP XM19 | ZAPP 2507 | ZAPP 25-6MO | ZAPP 27-7MO | ZAPP MP35N | ZAPP C276 | |---------------------|----------|-----------|-----------|-----------|-------------|-------------|------------|-----------| | Fe | 65.40 | 67.71 | 56.40 | 62.43 | 46.30 | 39.65 | 1.00 | 5.5 | | Mn | 2.00 | 2.0 | 5.00 | 0.6 | 2.00 | 3.00 | 0.15 | 0.5 | | Ni | 12.00 | 5.5 | 12.50 | 7.0 | 25.00 | 27.00 | 35.00 | 55.0 bal. | | Со | * | * | * | * | * | * | 32.90 | 2.0 | | Cr | 17.00 | 22.0 | 22.00 | 25.0 | 20.00 | 21.75 | 20.00 | 15.5 | | Мо | 2.50 | 2.5 | 2.25 | 4.0 | 6.50 | 7.25 | 9.75 | 16.0 | | W | * | * | * | * | * | * | * | * | | Nb | * | * | 0.20 | * | * | * | * | * | | N | * | .12 | 0.30 | * | 0.20 | 0.35 | * | * | | * Trace | | | | | | | | | | PI | 25.25 | 31.57 | 33.03 | 39.85 | 43.65 | 49.53 | 52.18 | 74.43 | #### Pitting Index Page 4/5 #### **Zapp Precision Wire Standards** - 1. All wirelines must pass an eddy current test as part of our NDT quality assurance program. - 2. All wirelines and armor wires must pass an aged wrap test as part of our NDT quality assurance program. - 3. All wirelines and armor wires have full traceability. - 4. All ZAPP 316 wirelines are 100% weld free and supplied in continuous lengths. #### **Zapp Precision Wire Quality** The Zapp Precision Wire technology, quality, and superior wire drawing capabilities will make the difference for critical armor wire and wireline applications. The Zapp Precision Wire quality system is registered to ISO 9001:2015. ZAPP PRECISION WIRE WIRE I BAR I PROFILE I FLAT WIRE Zapp Precision Wire, Inc. 475 International Circle Summerville, South Carolina 29483 U.S.A. Phone 1 843 851-0700 Fax 1 843 851-0010 Toll-free 1 888-777-3962 Precisionwire-usa@zapp.com www.zapp.com Further information regarding our products and locations are available in our image brochure and under www.zapp.com The illustrations, drawings, dimensional and weight data and other information included in this data sheet are intended only for the purposes of describing our products and represent non-binding average values. They do not constitute quality data, nor can they be used as the basis for any guarantee of quality or durability. The applications presented serve only as illustrations and can be construed neither as quality data nor as a guarantee in relation to the suitability of the material. This cannot substitute for comprehensive consultation on the selection of our products and on their use in a specific application. The data sheet is not subject to change control. Last revision: December 2022